Abstract

In this study, the gold/poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester/n-type silicon (Au/P3HT:PCBM/n-Si) metal–polymer–semiconductor (MPS) Schottky barrier diodes (SBDs) were investigated in terms of the effects of PCBM concentration on the electrical parameters. The forward and reverse bias current–voltage (I–V) characteristics of the Au/P3HT:PCBM/n-Si MPS SBDs fabricated by using the different P3HT:PCBM mass ratios were studied in the dark, at room temperature. The main electrical parameters, such as ideality factor (n), barrier height (ΦB0), series resistance (Rs), shunt resistance (Rsh), and density of interface states (Nss) were determined from I–V characteristics for the different P3HT:PCBM mass ratios (2:1, 6:1 and 10:1) used diodes. The values of n, Rs, ΦB0, and Nss were reduced, while the carrier mobility and current were increased, by increasing the PCBM concentration in the P3HT:PCBM organic blend layer. The ideal values of electrical parameters were obtained for 2:1 P3HT:PCBM mass ratio used diode. This shows that the electrical properties of MPS diodes strongly depend on the PCBM concentration of the P3HT:PCBM organic layer. Moreover, increasing the PCBM concentration in P3HT:PCBM organic blend layer improves the quality of the Au/P3HT:PCBM/n-Si (MPS) SBDs which enables the fabrication of high-quality electronic and optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.