Abstract

Voltage fade significantly hinders the practical use of Li-rich Mn-based layered oxides (LLOs) as cathode materials for next-generation high-energy-density Li-ion batteries. Therefore, an in-depth understanding of the factors influencing the LLO voltage fade during cycling is fundamentally important for tailoring the structure and thus improving the electrochemical performance of the corresponding electrodes. Herein, we compare the electrochemical performances of LLOs with different particle size and conduct in situ high-pressure response measurements to determine the effects of particle size on voltage fade, demonstrating that small particles can undergo a reversible layer-to-spinel phase transition that results in improved voltage stability during cycling. The above finding provides a novel paradigm for the development of high-capacity LLO electrodes and thus contributes to the establishment of a more energy-efficient and green society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.