Abstract

ABSTRACTOxygen-doped Ge2Sb2Te5 films (denoted as Ge2Sb2Te5-O) with oxygen concentration in between 0 and 10.3 at. % were prepared by direct current magnetron reactive sputtering with Ge2Sb2Te5 target. Both the crystallization temperature and activation energy of Ge2Sb2Te5-O films increased, while the crystalline grain size refined with oxygen concentration. For both amorphous and crystalline phases, optical band gap Egopt increases with oxygen concentration – a similar trend as observed in resistivity measurements. X-ray diffraction results showed that the face center cubic (fcc) structure maintained even after 400°C anneal with oxygen addition in between 7.5 − 8.3 at.% - a different phenomenon from undoped Ge2Sb2Te5 film, but with crystallinity diminished gradually with oxygen concentration. Only Sb2Te3 diffraction peak was observed in the 10.3 at.% O film after 400°C anneal. In conjunction with the bonding information obtained from X-ray photoelectron spectroscopy (XPS), effects of oxygen on the microstructures, thermal properties, resistivity and stability of fcc structure are examined and the embedded mechanisms are discussed in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.