Abstract

The combined effects of oxygen and water vapor on three typical volatile organic compounds, i.e. tetrachloromethane, n-butane and toluene, decomposition efficiency under gliding arc gas discharge conditions are studied. The electron density and the density of the reactive radicals such as O and OH are modified by addition of oxygen and water vapor. Consequently, the decomposition process can be enhanced or suppressed, depending on the involved chemical structures and reaction channels. The addition of oxygen and water vapor suppresses the tetrachloromethane decomposition which indicates that this process is mainly controlled by the electron dissociation reactions. By contrast, the n-butane and toluene decompositions are enhanced, which shows that they can be mainly ascribed to the radical induced reactions. Especially, in a moist atmosphere the OH radicals are supposed to play the most important role in the n-butane decomposition process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.