Abstract

The influences of a series of anion doping on the electronic structures of sodium niobate (NaNbO3) have been systematically investigated by density functional theory (DFT) calculations with the hybrid B3LYP functional. As for B[Formula: see text](C,[Formula: see text]P)-doped NaNbO3, the isolated B 2p (C 2p, P 3p) states were formed above the valence band maximum (VBM) of NaNbO3, which were too weak to mix with O 2p states and thus produced band gap narrowing. While the band gap of NaNbO3 was slightly narrowed after F doping. As for S-doped NaNbO3, the S 3p states mixed with O 2p states well and thus reduced the band gap energy. According to the calculation results, we tentatively put forward that S doping would be appropriate for single anion doping NaNbO3, while the B[Formula: see text](C,[Formula: see text]P) elements would be suitable candidates for co-doping NaNbO3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.