Abstract
Nd 3+-doped precursor glass in the K 2O–SiO 2–Y 2O 3–Al 2O 3 (KSYA) system was prepared by the melt-quench technique. The transparent Y 3Al 5O 12 (YAG) glass–ceramics were derived from this glass by a controlled crystallization process at 750 °C for 5–100 h. The formation of YAG crystal phase, size and morphology with progress of heat-treatment was examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Fourier transformed infrared reflectance spectroscopy (FT-IRRS). The crystallite sizes obtained from XRD are found to increase with heat-treatment time and vary in the range 25–40 nm. The measured photoluminescence spectra have exhibited emission transitions of 4F 3/2 → 4I J ( J = 9/2, 11/2 and 13/2) from Nd 3+ ions upon excitation at 829 nm. It is observed that the photoluminescence intensity and excited state lifetime of Nd 3+ ions decrease with increase in heat-treatment time. The present study indicates that the incorporation of Nd 3+ ions into YAG crystal lattice enhance the fluorescence performance of the glass–ceramic nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.