Abstract

This study investigated the effects of nanoparticles (NPs) on the tensile resistance of ultra-high-performance fiber-reinforced concrete (UHPFRC), containing 1.5 vol% smooth steel fibers, at both static (0.000167 s−1) and high strain rates (61.86–162.00 s−1). Three types of NPs, namely nano-CaCO3 (3 wt%), nano-SiO2 (1 wt%), and nano-carbon nanotube (CNT) (1 wt%) were considered. All the UHPFRCs containing NPs generated higher rate-sensitive tensile resistance than the UHPFRCs without NPs. For instance, the dynamic increase factor (DIF) for the post-cracking strengths of the UHPFRCs containing nano-CaCO3, nano-SiO2, or nano-CNT was 2.94, 2.79, and 2.69, respectively, while that of the UHPFRCs without NPs was 2.65. The DIFs for tensile parameters of UHPFRCs were dependent upon the types of NPs: nano-CaCO3 produced the highest DIFs for first- and post-cracking strengths, and the number of microcracks, whereas nano-CNT generated the highest DIFs for strain capacities and peak toughness. Besides, the sources of the rate sensitivity of tensile resistances of UHPFRCs containing NPs are closely related to the interfacial bond strengths and compressive strength of matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.