Abstract

Flax (Linum usitatissimum L.), as an important commercial crops, is a rich source of fatty acids, protein, dietary fiber and lignans. Flax plant has an effective anticancer activity due to lignan contents. Nanoparticles have recently been used as efficient non-biologic elicitors to improve the biosynthesis of secondary metabolites. In this study, the effects of different concentration of ZnO (0, 30, 60, and 120 mg/L) and TiO2 (0, 50, 100, and 150 mg/L) nanoparticles at different time (0, 24, 48, and 72 h) were investigated on enzyme activities and production of secondary metabolites in cell suspension cultures of flax. The results indicated that the highest activity of phenylalanine ammonia lyase (PAL) was observed in 30 mg/L nano-ZnO treatment at 48 h, whereas the effect of nano-TiO2 on PAL enzyme activity was not statistically significant. According to the results, the highest activity of CAD (cinnamyl alcohol dehydrogenase) was observed in 60 mg/L concentration of nano-ZnO at different intervals. The use of 150 mg/L nano-TiO2 led to increased activity of CAD. The maximum content of total phenol was detected at 150 mg/L nano-TiO2. Different concentrations of nano-TiO2, caused to an increase in total lignan at all intervals. The highest amount of total phenol and lignans was observed in 30 and 60 mg/L ZnO. In the present study, we were observed different effects of nanoparticle on enzymes activity and secondary metabolite production in cell suspension cultures of flax plant, depending on concentration and type of nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.