Abstract

Horseradish peroxidase (HRP) has long attracted intense research interest and is used in many biotechnological fields, including diagnostics, biosensors and biocatalysis. Enhancement of HRP catalytic activity and/or stability would further increase its usefulness. Based on prior art, we substituted solvent-exposed lysine and glutamic acid residues near the proximal helix G (Lys 232, 241; Glu 238, 239) and between helices F and F′ (Lys 174). Three single mutants (K232N, K232F, K241N) demonstrated increased stabilities against heat (up to 2-fold) and solvents (up to 4-fold). Stability gains are likely due to improved hydrogen bonding and space-fill characteristics introduced by the relevant substitution. Two double mutants showed stability gains but most double mutations were non-additive and non-synergistic. Substitutions of Lys 174 or Glu 238 were destabilising. Unexpectedly, notable alterations in steady-state V m/ E values occurred with reducing substrate ABTS (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)), despite the distance of the mutated positions from the active site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.