Abstract

The effects of changing the length of the cat soleus muscle on electromyographic (EMG) signals, muscle force and the corresponding EMG-force relationship were assessed using distributed stimulation of ten ventral root filaments and irregular interpulse intervals. EMG-force relationships were first determined for four muscle lengths using a protocol of simultaneous addition and rate modulation of ventral root filaments. In the second test, three submaximal levels of stimulation were applied at eight muscle lengths. EMG signals were obtained using surface and wire electrodes, and force was measured using a strain transducer. For most muscle lengths, the relationships between integrated EMG and mean force obtained using wire and surface electrodes were sigmoid with a linear intermediate region. The effects of muscle length on EMG signals were likely to be associated with movement of the recording electrodes relative to each other and to the active motor units. Mean forces increased with increasing muscle length and with increasing levels of stimulation. Mean force-length relationships obtained using submaximal stimulation were not simply scaled down versions of the force-length relationship obtained using supramaximal stimulation of the soleus nerve, but appeared to be shifted towards longer muscle lengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.