Abstract

Abstract The objective was to conduct a laboratory investigation of moisture susceptibility and rutting resistance of non-foaming warm mix asphalt (WMA) mixtures containing moist aggregates. Gyration number and weight loss of various samples, indirect tensile strength (ITS), tensile strength ratio (TSR), rut depths of dry and moisture conditioned specimens, as well as failed temperatures and rutting factors of recovered binders were measured for all mixtures. The experimental design included two aggregate moisture contents (0 and ∼0.5 % by weight of the dry mass of the aggregate), two lime contents (1 and 2 % lime by weight of dry aggregate) and one liquid anti-stripping agent (ASA), three non-foaming WMA additives (Cecabase®, Evotherm®, and Rediset®) with control, and two aggregate sources. A total of 34 mixtures were designed and a total of 340 specimens were tested in this study. The test results indicated that the aggregate source significantly affects the ITS and rutting resistance regardless of the WMA additive, ASA, and moisture content. In addition, the ITS and rut depth of the non-foaming WMA mixtures containing moist aggregates generally satisfied the demand of pavement without additional treatment. The mixtures with three WMA additives exhibited similar rutting resistance under dry and wet conditions. The liquid ASA, used in this study, for moisture resistance is not recommended to use in WMA mixtures containing moist aggregates as the aggregate is sensitive to moisture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.