Abstract
Acclimatization to intermittent hypoxia (IH) improves exercise performance by enhancing oxygen delivery and utilization, but the effect of IH on hemodynamic control remains unclear. This study investigates how two intensities of IH influence hemodynamic control to develop an IH regimen that improves aerobic fitness and minimizes risk of peripheral vascular disorder. Thirty healthy sedentary men were randomly divided into severe (SIH) and moderate (MIH) IH and control (C) groups. The subjects were exposed to 12% (SIH), 15% (MIH), or 21% (C) O2 for 1 h/day, 5 days/week for 4 weeks in a normobaric hypoxia chamber. The results demonstrate that (1) improved pulmonary ventilation and oxygen uptake by SIH and MIH; (2) SIH elevated blood pressure during exercise and increased plasma malondialdehyde and nitric oxide (NO) metabolite levels, accompanied by reduced hyperaemic arterial response, venous compliance, endothelium-dependent vasodilatation, and decreased plasma total antioxidant and vitamin E levels; (3) while such effects were not seen following MIH; and (4) there were no significant differences in endothelium-independent vasodilatation during all experimental periods among the three groups. We conclude that both SIH and MIH regimens improve pulmonary ventilation. However, SIH but not MIH decreases anti-oxidative capacity and increases lipid peroxidation in circulation, leading to suppression of vascular endothelial function, causing impairment of vascular haemodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.