Abstract

Effects of seed atoms on the formation of nanodots on silicon surfaces during normal incidence Ar+ ion bombardment at room temperature are studied with real-time grazing-incidence small-angle x-ray scattering (GISAXS), real-time wafer curvature stress measurements and ex situ atomic force microscopy. Although Si surfaces remain smooth during bombardment at room temperature, when a small amount of Mo atoms is supplied to the surface during ion bombardment, the development of correlated structures (“dots”) is observed. Stress measurements show that initially a compressive stress develops during bombardment, likely due to amorphization of the surface and insertion of argon. However, seeding causes a larger tensile stress to develop with further bombardment, possibly due to the formation of higher density regions around the Mo seed atoms on the surface. Detailed fits of the GISAXS evolution during nanostructure growth show that the instability is larger than predicted by the Bradley-Harper theory of curvature-dependent sputter yield. These results suggest that the tensile stress is playing a dominant role in driving the nanodot formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.