Abstract

Biomorphic C/SiC composites were fabricated from different kinds of wood by liquid silicon infiltration (LSI) following a two-step process. In the first-step, the wood is converted into carbon preforms by pyrolysis in a nitrogen atmosphere. The carbon preforms are then infiltrated by silicon melt at 1,560°C under vacuum to fabricate C/SiC composites. The mechanical properties of the C/SiC composites were characterized by flexural tests at ambient temperature, 1,000, and 1,300°C, and the relationship between mechanical properties and microstructure was analyzed. The flexural strength of the biomorphic composites was strongly dependent on the properties of the carbon preforms and the degree of silicon infiltration. The flexural strength increased with increasing SiC content and bulk density of composite, and with decreasing porosity in the C/SiC composite. An analysis of fractographs of fractured C/SiC composites showed a cleavage type fracture, indicating brittle fracture behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.