Abstract

The proton conductivity in functional oxides is crucial in determining electrochemistry and transport phenomena in a number of applications such as catalytic devices and fuel cells. However, single characterization techniques are usually limited in detecting the ionic dynamics at the full range of environmental conditions. In this report, we probe and uncover the links between the microstructure of nanostructured ceria (NC) and parameters that govern its electrochemical reaction and proton transport, by coupling experimental data obtained with time-resolved Kelvin probe force microscopy (tr-KPFM), electrochemical impedance spectroscopy (EIS), and finite element analysis. It is found that surface morphology determines the water splitting rate and proton conductivity at 25 °C and wet conditions, where protons are mainly generated and transported within surface physisorbed water layers. However, at higher temperature (i.e., ≥125 °C) and dry conditions, when physisorbed water evaporates, grain size and crystallographic orientation become significant factors. Specifically, the proton generation rate is negatively correlated with the grain size, whereas proton diffusivity is facilitated by surface {111} planes and additional conduction pathways offered by cracks and open pores connected to the surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.