Abstract

Carbonate reservoirs develop many different types of microfractures that play an important role in increasing the effective reservoir space and permeability. Thus, the qualitative and quantitative characterisation of the effect of microfractures on permeability in rocks is essential. In this study, a quantitative method for evaluating the impact of different microfracture parameters on carbonate rock permeability was proposed. Lattice Boltzmann simulations were carried on two carbonate digital cores with different types of artificially added microfractures. Based on the simulation results, a partial least squares regression analysis was used to investigate the impact of microfractures on the permeability of the cores. Increases in the fracture length, aperture, and density were found to linearly increase the permeability of the carbonate rocks, and as the fracture length increased to penetrate the whole core, an exponential increase in permeability was observed. Additionally, the effect of microfractures on the digital core permeability was more significant in cores with high permeability compared to that in low-permeability cores. Although both fractures and matrix permeability contribute to the permeability of the digital cores, the former were found to have a greater effect on the permeability. Cited as: Liu, C., Zhang, L., Li, Y., Liu, F., Martyushev, D. A., Yang, Y. Effects of microfractures on permeability in carbonate rocks based on digital core technology. Advances in Geo-Energy Research, 2022, 6(1): 86-90. https://doi.org/10.46690/ager.2022.01.07

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.