Abstract

To evaluate the effects of metoclopramide-induced hyperprolactinemia on the prolactin receptor of murine endometrium. Experimental study using the RNA extraction to detect tissue prolactin receptor isoforms by reverse-transcriptase polymerase chain reaction (RT-PCR). University-based laboratory. Seventy-two female swiss albino mice (Mus musculus), approximately 100 days old, were divided into six 12-animal groups: (GI) nonoophorectomized mice given vehicle; (GII) nonoophorectomized mice treated with metoclopramide; (GIII) oophorectomized mice treated with metoclopramide; (GIV) oophorectomized mice treated with metoclopramide and 17beta-estradiol; (GV) oophorectomized mice treated with metoclopramide and micronized progesterone; (GVI) oophorectomized mice treated with metoclopramide and a solution of 17beta-estradiol and micronized progesterone. Drugs were administered for 50 days. Following euthanasia, the middle portions of the uterine horns were removed, sectioned, and immediately frozen for RT-PCR procedures. Blood was collected for the dosage of prolactin and serum estrogen and progesterone using radioimmune assay. Identification of uterine prolactin receptor isoforms. The PRL receptor and its isoform L were identified only in GI (control group) and GII (metoclopramide), the two groups with nonoophorectomized animals. The amount of PRL receptor mRNA and that of its isoform L from GII were the largest. No other isoforms of the prolactin receptor were identified in any of the groups. Our results suggest that replacement of estrogen and progestin may not increase the mRNA of endometrial PRL receptor in metoclopromide-induced hyperprolactinemia in rats after castration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.