Abstract

The metalloprotease lethal factor (LF) from Bacillus anthracis plays a vital role in anthrax toxin action, and thus becomes a target for anti-anthrax therapy. Following the guidelines based on existing metalloprotease inhibitors, we designed a 'first-generation' LF inhibitor R9LF-1. This inhibitor was shown to be very stable by itself in a wide range of pH and temperature and able to inhibit LF activity in vitro. However, as we reported previously in the presence of LF, this inhibitor was degraded to a small molecular weight species, resulting in a significantly decreased ability to protect MAPKK from cleavage by LF as well as to protect murine macrophages from lethal toxin. In order to elucidate this unusual phenomenon to build solid basis for high-efficiency LF inhibitor development, we performed extensive research to study the effect of LF on its peptide-based inhibitor. Effects of temperature and incubation period of time on generation of the smaller peptide (short version R9LF-1) by LF as well as its catalytic domain were analyzed. We found that LF degraded R9LF-1 with maximum efficiency in the pH range of 7.0-8.5, which correlates well with the range of LF enzymatic activity with its native substrate. The degradation showed a deviation from normal hyperbolic kinetics but a similarity to the kinetics profile of an enzyme-catalyzed reaction with positive cooperativity. The short version R9LF-1 had decreased inhibitory activity toward LF; surprisingly, BIAcore results suggested a better affinity for its binding to LF. In addition, R9LF-1 was not hydrolyzed by other common proteases, such as chymotrypsin and pepsin, suggesting hydrolysis of the bond between amino acid and hydroxamate groups is unique to LF. This study calls for caution when designing peptide-based LF inhibitors and when interpreting effects of these types of inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.