Abstract
The effects of a non-uniform temperature gradient and magnetic field on the onset of convection in a horizontal layer of Boussinesq fluid with suspended particles confined between an upper free/adiabatic boundary and a lower rigid/isothermal boundary have been considered. A linear stability analysis is performed. The microrotation is assumed to vanish at the boundaries. The Galerkin technique is used to obtain the Eigen values. The influence of various parameters on the onset of convection has been analysed. Six different non-uniform temperature profiles are considered and their comparative influence on onset is discussed. It is observed that the electrically conducting fluid layer with suspended particles heated from below is more stable compared to the classical electrically conducting fluid without Suspended particles. The critical wave number is found to be insensitive to the changes in the parameters but sensitive to the changes in the Chandrasekhar number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.