Abstract

Nickel-based superalloys are among the most difficult materials to machine because they have high thermal strength, they are prone to hardening, carbides severely abrade the tool, and they have very poor thermal conductivity. Slot milling is a specific issue as it is characterized by rapid tool wear and frequent tool breakages. This is why reconditioned tools are frequently employed in industrial environments, as they can considerably decrease the expenses associated with tools. The chosen machining strategy also plays a crucial role in the tool's lifespan and the quality of the machined surface, making it essential to select the appropriate strategy. Hence, the authors have opted for two conventional trochoidal strategies, namely the circular and swinging toolpath, along with a contemporary toolpath known as the Autodesk Inventor HSM Adaptive strategy. The authors investigated the effects of technological parameters and toolpaths on cutting forces, tool wear, surface roughness and burr formation on machined edges. The results show that lower cutting parameters and adaptive strategies lead to the smallest tool loads, tool wear, the best quality of surface roughness and burr formation on machined edges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.