Abstract

ABSTRACTThe lubricant is an indispensable agent used in wood plastic composites (WPCs) to improve the processing flowability, especially with high wood content. Here, the effects of different lubricating systems on the rheological and mechanical properties of wood flour/polypropylene (WF/PP) composites are investigated. Additionally, several theoretical models are used to describe the rheological behavior. The results show that stearic acid (SA), semirefined paraffin wax (Wax), and zinc stearate (ZnSt) can decrease the equilibrium torque, complex viscosity, relaxation time, and flow activation energy of the composite melts. Compared to a single lubricant, the combination of Wax and SA lubricants exhibits lower values and the composite with 3 wt % SA and 1 wt % Wax has the best lubricating effect. The synergistic effect of the combined SA and Wax lubricants further decreases the interactive force between the molecules, indicating that multifunctional lubricating systems play a predominant role in WPCs and improve the overall processing properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47667.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.