Abstract

Translocation is an increasingly important tool for managing endangered species, but factors influencing the survival of translocated individuals are not well understood. Here we examine intrinsic and extrinsic drivers of survival for critically endangered California condors (Gymnogyps californianus) whose wild population recovery is reliant upon releases of captively bred stock. We used known fate models and information-theoretic methods to compare the ability of hypothesized covariates, most of which serve as proxies for lead exposure risk, to predict survival rates of condors in California. Our best supported model included the following predictors of survival: age of the recovery program, precipitation, proportion of days observed feeding on proffered carcasses, maximum blood lead concentration over the preceding 18months, and time since release. We found that as flocks have increased in size and age, condors are increasingly likely to range more widely and less likely to be observed feeding on proffered food, and these "wilder" behaviors were associated with lower survival. After accounting for these behaviors, we found a positive survival trend, which we attribute to ongoing improvements in management. Our findings illustrate that the survival of translocated animals, such as highly social California condors, is influenced by behaviors that change through time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.