Abstract
PurposeThis paper aims to investigate the effect of laser surface texturing on the tribological performance of Ti-6Al-4V disks sliding against Si3N4 balls under hydroxyethyl-cellulose water-based lubrication. The friction coefficients and wear losses of textured and untextured disks were measured and compared. The results indicate that the texture patterns can lead to reduction of friction and wear in the condition of water-based lubrication.Design/methodology/approachSolutions of hydroxyethyl cellulose were used as water-based lubricants. To find the optimal laser texturing parameters for the best performance enhancement, three line-like patterns were fabricated onto the disks and three machining parameters were used for each type of pattern. Tribological tests were conducted in rotation sliding with ball-on-disk contact configuration on UMT-2.FindingsA higher density of texture lines leads to a larger friction and wear reduction. Compared with untextured disks, the friction coefficient is reduced from 0.043 to 0.028 for textured disks. Some unworn parts were detected in the contact region of the balls against textured disks, which were not found on the balls against untextured disks. The worn surfaces indicated that periodic geometry of the contact track was rebuilt during run-in period, which was beneficial for the formation of lubricant films.Originality/valueIn this work, laser surface texturing was used to reduce the friction and wear of Ti-6Al-4V specimens in water-based lubrication, which can be used to improve the tribological performance of Ti-6Al-4V components in mechanical equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.