Abstract

Algal blooms threaten human health and aquatic ecosystem through the production of microcystins (MCs) by toxic strains. The accumulation of rare earth elements (REEs) in water affects the growth and physiological activities of algae. However, whether or how REEs affect cellular microcystins (MCs) is largely unknown. In this study, the effects of lanthanum ion [La(III)], a type of REE, on the MCs in Microcystis aeruginosa were investigated, and the mechanism of the effect was analyzed using ecological stoichiometry. The different concentrations of La(III) were selected to correlate environmental pollution status. Low-dose La(III) (0.2, 2.0, and 4.0 μM) exposure increased the total content of MCs and the percentage contents of microcystin-YR (MC-YR) and microcystin-LW (MC-LW) and decreased the percentage content of microcystin-LR (MC-LR). High-dose La(III) (8.0, 20, 40, and 60 μM) exposure decreased the total content of the MCs, increased the percentage content of MC-LR, and decreased the percentage contents of MC-YR and MC-LW. The changes in the total MCs content were positively associated with the ratios of C:P and N:P in algal cells. The composition of MCs was dependent on the ratio of C:N in algal cells; for example, the percentage content of MC-LR decreased and the percentage content of MC-YR and MC-LW increased as the ratio of C:N in algal cells increased. In conclusion, La(III) could affect the content and composition of MCs via changes in the growth and chlorophyll-a content of Microcystis aeruginosa, and these effects depended on the ratios of C:P, N:P, and C:N in Microcystis aeruginosa. Such changes may influence the toxicity of Microcystis blooms. The results provides a new insight into the mechanism of REEs effects on algal toxins and provide references for evaluating environmental risks of REEs pollution in aquatic ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.