Abstract
1. Rates of ketogenesis from endogenous butyrate or oleate were measured in isolated hepatocytes prepared from fed rats during different reproductive states [virgin, pregnant, early-lactating (2-4 days) and peak-lactating (10-17 days)]. In the peak-lactation group there was a decrease (25%) in the rate of ketogenesis from butyrate, but there were no differences in the rates between the other groups. Wth oleate, the rate of ketogenesis was increased in the pregnant and in the early-lactation groups compared with the virgin group, whereas the rate was 50% lower in the peak-lactation group. 2. Experiments with [1-(14)C]oleate indicated that these differences in rates of ketogenesis were not due to alterations in the rate of oleate utilization, but to changes in the amount of oleoyl-CoA converted into ketone bodies. 3. Although the addition of carnitine increased the rates of ketogenesis from oleate in all groups of rats, it did not abolish the differences between the groups. 4. Measurements of the accumulation of glucose and lactate showed that hepatocytes from rats at peak lactation had a higher rate of glycolytic flux than did hepatocytes from the other groups. After starvation, the rate of ketogenesis from oleate was still lower in the peak-lactation group compared with the control group. This suggests that the alteration in ketogenic capacity in the former group is not merely due to a higher glycolytic flux. 5. It is concluded that livers from rats at peak lactation have a lower capacity to produce ketone bodies from long-chain fatty acids which is due to an alteration in the partitioning of long-chain acyl-CoA esters between the pathways of triacylglycerol synthesis and beta-oxidation. The physiological relevance of this finding is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.