Abstract
The objective of this study was to observe low-frequency instabilities caused by heating of kerosene under supercritical operating conditions. Gaseous oxygen and liquid kerosene were injected using a shear-coaxial injector. Under specific heating conditions, the fuel heating system induced an extremely low frequency pressure fluctuation ranging from 9.9 to 11.4Hz. When pressure oscillation occurred in the heating system, low-frequency combustion instability was subsequently induced in the range of 30–200Hz. To understand the effects of the fuel heating temperature on the combustion instability, the dynamic pressure and OH* chemiluminescence intensity were measured in a combustion chamber at high speed. Further, the reacting spray of the combustion was visualized by a shadowgraph technique. In this experiment, an approximate fuel pressure of 3.0MPa was employed in order to attain a supercritical condition of kerosene. The measured dynamic pressure and chemiluminescence intensity in the time domain were converted to frequency-domain spectra by fast Fourier transform. Analysis of the dynamic pressure and chemiluminescence intensity measurements confirmed that the low-frequency pressure oscillation in the heating system had an influence on the combustion instability. From the visualization data, it was also revealed that there existed varying amplitude levels of flow rate fluctuation. This fluctuation in turn caused a periodic injection of kerosene at a frequency similar to both the combustion instability frequency and the OH* chemiluminescence intensity frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.