Abstract
The boundary film formation and lubrication effects of low molecular weight silicone lubricant molecules with cationic side groups were studied. Poly(N,N,N-trimethylamine-3-propylmethylsiloxane-co-dimethylsiloxane) iodide was synthesized and deposited on silicon oxide surfaces to form a bound-and-mobile lubricant film. The bound nature was investigated with ellipsometry, water contact angle, and X-ray photoelectron spectroscopy for the polymers with cationic mole percent of 6, 15, and 30 mol % (monomer based). The bound layer thickness decreased as the cationic content increased. The quaternary ammonium cations in this layer were electrostatically bound to the substrate surface. The mobile nature of the multilayers was explored with scanning polarization force microscopy. The multilayer films exhibited characteristic topographic features due to ionic interactions within the polymer film. Contact scratching of these films altered the multilayer topography within the contact scanned area. Even after high load contact scanning, the bound layer was not removed from the scanned region. These results implied that the molecules in the first layer are strongly bound and the molecules in the multilayers are mobile. Both nanoscale and macroscale tribological tests of these films revealed that the polymer with 15 mol % cationic groups gives lower friction and adhesion than the 6 and 30 mol % cationic polymers as well as the polydimethylsiloxane control sample. This seems to be due to a synergistic effect between the bound and the mobile layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.