Abstract
We investigate propagation of a charge carrier along intrinsically dynamically disordered double-stranded DNA. This is realized by the semiclassical coupling of the charge with a nonlinear lattice model that can accurately describe the statistical mechanics of the large amplitude fluctuations of the base pairs leading to the thermal denaturation transition of DNA. We find that the fluctuating intrinsic disorder can trap the charge and inhibit polaronic charge transport. The dependence of the mean distance covered by the charge carrier until its trapping, as a function of the energy of the fluctuations of the base pairs is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.