Abstract
Glutamatergic transmission within the nucleus accumbens (Nac) is considered to subserve the transfer of different types of information from the cortical and limbic regions. In particular, it has been suggested that glutamatergic afferences from the hippocampus and the prefrontal cortex provide the main source of contextual information to the Nac. Accordingly, several authors have demonstrated that the blockade of glutamate receptors within the Nac impairs various spatial tasks. However, the exact role of the different classes of glutamate receptors within the Nac in short-term spatial memory is still not clear. In this study we investigated the involvement of two major classes of glutamate receptors, NMDA and AMPA receptors, within the Nac in the acquisition of spatial information, using the Morris water maze task. Focal injections of the NMDA antagonist, AP-5 (0.1 and 0.15 μg/side), and the AMPA antagonist, DNQX (0.005, 0.01 μg/side), were performed before a massed training phase, and mice were tested for retention immediately after. NMDA and AMPA receptor blockade induced no effect during training. On the contrary, injection of the two glutamatergic antagonists impaired spatial localization during the probe test. These data demonstrate an involvement of the Nac in short-term spatial learning. Moreover, they prove that within this structure the short-term processing of spatial information needs the activation of both NMDA and AMPA receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.