Abstract

We demonstrate that the electroluminescence efficiencies of blue organic light-emitting diodes can be significantly enhanced by the incorporation of interlayers at the hole transporting layer (HTL)/emitting layer (EML) and/or EML/electron transporting layer (ETL) interfaces. Blue light-emitting iridium(III)bis(4,6-difluorophenyl)-pyridinato-N,C2′) picolinate was doped in an m-bis-(triphenylsilyl)benzene (UGH3) host and hole transporting wide band gap materials were introduced between the HTL and the EML as interlayers in order to block triplet exciton quenching and reduce electron overflow. The effects of adding a second undoped UGH3 interlayer at the EML/ETL interface were also studied. When the appropriate interlayers were added, the device performances were found to be dramatically enhanced, with peak external quantum and power efficiencies of 20.1% and 29.2lm∕W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.