Abstract
Oxic-settling-anaerobic (OSA) process is effective in minimizing sludge production, by inserting an anaerobic side-stream reactor (ASSR) in the recycling bypass. Interchange ratio (IR), the quantity ratio of sludge entering the ASSR to the sludge in the main stream reactors, is one of the most important parameters for OSA process. In the present study, a laboratory-scale anaerobic/anoxic/oxic (A2/O) process combined with an ASSR (A2/O-ASSR) was operated for 366 days in parallel with a conventional A2/O process to investigate the effects of IR on sludge reduction. IR was assigned values of 5%, 8%, 10%, and 15%, and the A2/O-ASSR process achieved 14.0%, 16.0%, 24.1%, and 13.7% of sludge reduction, respectively. At the optimum IR of 10%, high through-put sequencing analysis showed that the microbes responsible for pollutant removal and ubiquitous in wastewater treatment remained predominant in the two systems, and slow-growing microbes related to hydrolysis, nitrogen and phosphorus removal increased in the A2/O-ASSR process, which probably played a key role in sludge reduction. 40.6-58.6% of sludge reduction was caused by sludge decay in the ASSR. The tiny amount of extracellular polymeric substance released in the A2/O-ASSR process was subthreshold to cause remarkable sludge reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.