Abstract

The purpose of this study is to analyze the influence of the ambient temperature and humidity on the performance of a counterflow wet cooling tower according to the second law, exergy analysis, of thermodynamics. First, the properties of water and air flow through the tower were predicted and validated by the experiment. Exergy analysis then has been carried out for investigating the cooling tower performance with various inlet air conditions, relative humidity and dry bulb temperature, while the water side condition is kept constant. According to the analysis in this paper, the similar result in terms of required dry air flow rate, exergy change of water and that of air, exergy destruction and second law efficiency were obtained for the various inlet air conditions. The exergy change of water Δ x w is higher than that of air Δ x air, since Δ x w is the available energy of water to supply to air throughout the tower while Δ x air is the available energy of air to recover or utilize that supplied by water. It reveals that Δ x air is dominated by the exergy change of air due to evaporative heat transfer. In addition, it gives a clearer explanation of the cooling tower performance and gives clear trends for optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.