Abstract

The use of Saccharomyces and non-Saccharomyces yeast species as mixed starters has potential advantages over pure culture fermentation due to increased wine complexity based on modification of metabolites of oenological interest. In this work, the effects of initial oxygenation on fermentation performance, chemical and volatile composition of French Colombard wine fermented with Hanseniaspora vineae and Saccharomyces cerevisiae in sequential inoculations were investigated in 1 L flasks. Although dominated by S. cerevisiae at the middle-end of fermentation, initial aeration for 1 day boosted H. vineae populations, and allowed H. vineae to coexist longer with S. cerevisiae in mixed cultures compared to no aeration, and suppressed S. cerevisiae later in the fermentation, which resulted in extended fermentation time. More important, the major fermentation products and volatile compounds were significantly modified by aeration and different from no aeration fermentation. The wines produced by aeration of mixed fermentations were characterized with higher amounts of glycerol, lactic acid and acetate esters, and lower levels of ethanol, higher alcohol and ethyl fatty acid esters. The aeration had more potential to shape the quality of wines and diversify the aromatic characteristics relative to simple mixed inoculation, as indicated by PCA analysis. Our results suggested that the impact of early aeration on yeast physiology extends beyond the aeration phase and influences fermentation activity, chemical and aromatic compounds in the following anaerobic stage. The aeration for a short time during the cell growth stage in mixed fermentation is therefore a potential means to increase the aromatic diversity and quality of wine, possibly providing an alternative approach to meet the expectations of wine consumers for diverse aromatic qualities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.