Abstract

Bisphenol A, dibutyl phthalate and cadmium can be found in environment simultaneously. Several studies suggested that they had genotoxic effect. In this study, mono-exposure and co-exposure treatments, designed by 3 × 3 full factorial, were established to determine the individual toxicity and binary mixtures’ combined effects on the oxidative stress and genotoxicity in HepG 2 cells. The highest oxidative damage was observed in the Cd treatments groups. Compared with control groups, the maximum level of reactive oxygen species and malondialdehyde were ∼1.4 fold and ∼2.22 fold respectively. And a minimum level of superoxide dismutase activity was found with the decrease of 43%. The mechanism that excessive oxidative stress led to the DNA damage was inferred. However, cells treated with BPA showed the worst DNA damage rather than Cd, which may because Cd mainly damages DNA repairing mechanism. For the joint effect, different interactions can be found in different biological endpoints for different combinations since different mechanisms have been clarified in mixture toxicity studies. It is sure that the co-exposure groups enhanced cytotoxicity, oxidative stress and genotoxicity compared to the mono-exposures. Synergistic and additive interactions were considered, which means greater threat to organisms when exposed to multiple estrogenic endocrine disruptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.