Abstract

Glucocorticoids are widely used to treat various diseases including rheumatoid arthritis (RA); however, one of the most frequent and severe adverse effects is glucocorticoid-induced osteoporosis (GIOP). Iguratimod (IGU) is a novel conventional synthetic disease-modifying anti-rheumatic drug developed in Japan. The aim of this study is to investigate the effects of IGU on glucocorticoid-induced disorder of bone metabolism in vitro. In osteoclastogenesis of mouse bone marrow-derived cells, tartrate-resistant acid phosphatase staining, resorption pit assay, western blotting, real-time polymerase chain reaction (PCR), and mRNA sequencing were performed. In osteoblastogenesis of MC3T3-E1 cells, alkaline phosphatase (ALP) staining and activity, alizarin red staining, and mRNA sequencing were performed, and real-time PCR and western blotting were conducted in MC3T3-E1 cells and murine osteocyte-like cell line MLO-Y4 cells. IGU significantly suppressed a dexamethasone-induced increase in osteoclasts, differentiation, and bone resorption activity by inhibition of the receptor activator of the nuclear factor kappa-B (RANK)/tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6)/nuclear factor kappa-B (NFκB)-p52 pathway. In MC3T3-E1 cells, IGU significantly upregulated dexamethasone-induced downregulation of ALP activity, bone mineralization, and osteoblast-related gene andprotein expression. In MLO-Y4 cells, IGU significantly upregulated dexamethasone-induced downregulation of the gene expression of ALP and osteocalcin, and also downregulated receptor activator of NFκB ligand (RANKL)/osteoprotegerin gene expression ratio without dexamethasone. These results suggest that IGU may improve glucocorticoid-induced disorder of bone metabolism and may exhibit positive effects against GIOP associated with RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.