Abstract

Hypothyroidism in the rat induced by perinatal exposure to propylthiouracil (PTU) is a useful animal model to study molecular changes underlying neurobehavioral defects associated with this condition. Understanding the developmental alterations in gene expression related to the neurobehavioral dysfunction should help to identify molecular markers for developmental neurotoxicity at an early stage of development. In the present study, we evaluate the effects of PTU on the expression of a set of genes implicated in neural network formation or synaptic function at a minimal dose of PTU causing behavioral alteration. Various doses of PTU were administered to dams from late pregnancy to the lactation period and the expression of selected genes in the hippocampus and the cerebral cortex of offspring was examined by quantitative RT-PCR. Behavioral performance of PTU-treated rats was also assessed. PTU-treated rats showed increased motor activity and impairment of E-maze learning at weaning and after maturation. At doses causing such behavioral alteration, expression of GAP-43 and M1 mRNAs was changed during neuronal network formation, suggesting that levels of these factors during development are important for accurate postnatal development and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.