Abstract

ABSTRACTThe hydrolyzed soy protein isolate (HSPI) with different hydrolysis degree was applied to modify urea‐formaldehyde resins (UF) via copolymerization process. The properties of HSPI were characterized by attenuated total reflection Fourier transform infrared spectroscopy (ATR‐FTIR) and TGA. The results show that HSPI with different hydrolysis degree is obtained. 1H NMR and ATR‐FTIR spectra indicate that HSPI with different hydrolysis degree can incorporate into the structure of cured and uncured UF. The UF modified with higher hydrolysis degree of HSPI possess more stable units and contribute to the lower exothermic peak temperature in DSC curves. The bonding strength of HSPI modified UF increases as the hydrolysis degree of HSPI increases at the hot‐press temperature of 120°C and decreases at the hot‐press temperature of 150°C. The best bonding strength is 1.53 MPa at the hot‐press temperature of 135°C and improved 56.12% compared with UF. In addition, the formaldehyde emission is dramatically reduced. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41469.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.