Abstract
Cellulase adsorption of lignocellulosic materials is the key link during enzymatic hydrolysis. Hot-washing process (above lignin glass transition temperature) was used to change the physical structure of lignin, decrease covalent connection between cellulose and lignin, reduce the concentration of inhibitor, and explore the feasibility of enzymatic hydrolysis. The general objective of the paper was conducted to determine whether the hot-washing process has the potential to change the mechanism of lignin on enzyme hydrolysis. Hot-washing was carried out at 151 °C for 20 min. The ratio of acid insoluble lignin to acid soluble lignin was increased, while the formation of spherical lignin droplets on the cell wall surface was decreased. Enzymatic digestibility of hot-washed filter cakes showed enhanced digestibility over the control samples. The concentration of fermentation inhibitor (acetic acid, formic acid, furfural and 5-hydroxymethylfurfural) obviously decreased after hot-washing process. Hot-washing process significantly increased the adsorption ability of cellulase on the substrates and digestibility of biomass without removing much of the insoluble lignin content. Lignin distribution and/or physical property composition play a role.
Highlights
Cellulase adsorption of lignocellulosic materials is the key link during enzymatic hydrolysis
Ethanol can be made from cellulose via four main consecutive steps: pretreatment, enzymatic hydrolysis, fermentation, and separation
One of the major limitations in the cellulosic ethanol production is the enzymatic hydrolysis step (Sun and Cheng 2002), where fermentable sugars are released from biomass using enzymes
Summary
Cellulase adsorption of lignocellulosic materials is the key link during enzymatic hydrolysis. Hot-washing process (above lignin glass transition temperature) was used to change the physical structure of lignin, decrease covalent connection between cellulose and lignin, reduce the concentration of inhibitor, and explore the feasibility of enzymatic hydrolysis. The general objective of the paper was conducted to determine whether the hot-washing process has the potential to change the mechanism of lignin on enzyme hydrolysis. Lignocellulosic biomass is recognized as a high-potential feedstock for bio-ethanol production. It contains polymers of cellulose, hemicellulose, and lignin which bound together in a complex structure. Ethanol can be made from cellulose via four main consecutive steps: pretreatment, enzymatic hydrolysis, fermentation, and separation. One of the major limitations in the cellulosic ethanol production is the enzymatic hydrolysis step (Sun and Cheng 2002), where fermentable sugars are released from biomass using enzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.