Abstract

To expand the application range of fast-growing poplar, a modification method of poplar impregnated with nano-SiO2 and urea-formaldehyde resin was proposed in this study. Taking the mass ratio of nano-SiO2 mass to the solid content of urea-formaldehyde resin impregnation solution (W), high-temperature (H), and high-temperature time (T) as influencing factors, the effects of impregnation high-temperature heat treatment modification on the physical and mechanical properties of fast-growing poplar were explored. At the same time, the weight loss rate, oven-dry density, dry shrinkage properties, swelling properties, modulus of rupture (MOR), and modulus of elasticity (MOE) of the modified poplar were measured. The research results show that both the weight loss rate and the coefficient of variation of the oven-dry density have a high correlation with the temperature; the high-temperature immersion heat treatment can reduce the dry shrinkage and swelling of poplar, improve the dimensional stability, MOR, and MOE. W is 0–1%, H is 160 °C, and T is 2–4 h. The impregnated heat-treated wood has good MOR and MOE. Therefore, the combination of nano-SiO2 and urea-formaldehyde resin impregnation and heat treatment to modify poplar can improve some physical and mechanical properties of fast-growing poplar, expand the use of poplar, increase its added value, and realize high-value utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.