Abstract

The influence of high magnetic field annealing on the morphology, microstructure, and properties of pulsed-electrodeposited Co-Ni-P films was investigated. The as-deposited film with a rough surface changed into uniform nanocrystalline during the magnetic field annealing process. In particular, the formation of intestine-like appearance with spherical clusters vanishing is favored from a moderate magnetic field strength of 6 T, due to the polarized effects. Meantime, the diffraction peak (111) of α (fcc) phase shifts to the right direction, which is attributed to the fact that more Co atoms from phosphide phase are incorporated into the Ni lattice, in comparison with the case of annealing under 0 T and 12 T magnetic fields. The mechanical and magnetic properties of the films reach relative optimum values at B=6 T. The evolution of magneto-induced modification in the Co-Ni-P morphology, structure, and properties can be explained by the polarized effect and the diffusion-acceleration effect under a high magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.