Abstract
The purpose of this study is to investigate the influence of different heating rates on the properties of glass ceramic composite (GCC) at different spent bleach earth (SBE) loadings. GCC was prepared using SBE and recycled soda lime silicate (SLS) glass. The particle size of SLS glass was approximately <45μm. The GCC was formed by uniaxial dry pressing at weight fractions of SBE loading of 40 wt. %, 45 wt. %, and 55 wt. %. The GCC was then sintered at different heating rates of 2 oC/min, 4 ˚C/min, 6 oC/min and 8 ˚C/min at 700 oC of sintering temperature. The GCC specimens were analysed in terms of their physical properties, while crystalline phase and microstructure were characterized using X-Ray diffraction and scanning electron microscope (SEM), respectively. The results from X-Ray diffraction pattern showed that quartz and wollastonite phases were formed with no major changes on the phases as the heating rate increased. The results indicate that the variation of heating with 2 oC/min interval does not give a remarkable result of physical properties on GCC. High loading of SBE sintered at 2 oC/min of heating rate produced low water absorption, density and porosity. SEM analysis showed that the physical properties and crystalline phases were correlated to the SBE loading and changes in the heating rate. The study concluded with the prospect of continuing the work of optimisation on schedule heat treatment at sintering temperature regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.