Abstract
We evaluated the effects of halothane on synaptic and extrasynaptic GABAA and glutamate receptor responses using mechanically dissociated rat hippocampal CA3 neurons in which the well isolated neurons retain functional native nerve endings (the ‘synaptic bouton’ preparation). The preparation allows the simultaneous comparison of extrasynaptic GABAA and glutamate receptors, activated by bath applied GABA and glutamate, respectively, to the synaptic receptors measured as spontaneous and evoked postsynaptic currents. Paired-pulse synaptic responses evoked by focal electrical stimulation were also measured to evaluate any presynaptic effects. Halothane enhanced the extrasynaptic GABAA-receptor mediated postsynaptic responses in a concentration dependent fashion. At clinically relevant concentrations, halothane significantly increased both the amplitude and frequency of spontaneous postsynaptic inhibitory currents (sIPSCs) mediated by synaptic GABAA receptors. The relative amplitude of evoked IPSCs (eIPSCs) was also increased, concurrent with a decrease in failure rate and a significantly decreased eIPSC paired-pulse ratio. Halothane concentration dependently decreased the extrasynaptic glutamate-receptor induced postsynaptic responses but had no effects on spontaneous or evoked excitatory postsynaptic currents. These results suggest that halothane acts predominantly at presynaptic sites at GABAergic synapses to enhance inhibitory transmission at CA3 synapses, although it also increases extra-synaptic GABA responses. At excitatory synapses on to CA3 neurons, halothane has no presynaptic action—effecting only extrasynaptic receptors. Our results have clarified the locus of effects of the volatile anesthetic halothane at excitatory and inhibitory synapses, drawing somewhat different conclusions from those deduced from slices and culture systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.