Abstract

This study reported the activity of catalysts synthesized from platinum and molybdenum alloys in different atomic ratios and used as cathode electrocatalysts in the PEMFC. The structural properties of PtMo/C and Pt/C catalysts were analyzed by XRD analysis. The composition and distribution of these alloys in Vulcan XC-72R Carbon were determined by SEM and EDX techniques. CV studies assessed electrochemical properties such as ORR and ECSA activity. The performance of PEMFC cathodes that supplied pure hydrogen and oxygen was examined using polarization curves at different temperatures. Another way to improve the cathodic reaction is to use ozone as a potent oxidizing agent. It was measured that the OCV of the H2/O3 PEM fuel cell was 1.60 V, much greater than the open circuit voltage of the traditional H2/O2 PEM fuel cell. The PtMo/C catalyst achieved its highest power density of 137 mWcm−2 at 70 °C, 128 mWcm−2 at 60 °C, 101 mWcm−2 at 50 °C, and 85 mWcm−2 at 40 °C when exposed to H2/O2. As the temperature of the cell was raised, it was seen that the catalyst's catalytic activity increased.The maximum power density was detected to be inversely related to the rise in temperature when ozone was used. At low current densities, however, ozone was observed to greatly boost activation polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.