Abstract

Polycarbonate (PC) /graphene nanocomposite was prepared using multilayer graphene (MLG) with loadings of 0.5, 1, and 3 wt% via melt mixing process. Morphological, structural, and thermal properties of the PC/MLG nanocomposites are investigated to look into the influence of MLG on the nanocomposite. A significant increase (∼6.4°C) in glass transition temperature is observed upon the addition of 3 wt% of MLG into the polycarbonate matrix. This increase in glass transition temperature may be due to the interaction between the MLG and polycarbonate polymer matrix. The specific heat capacity of pure PC and PC/MLG nanocomposites varies linearly with temperature below their glass transition. Upon the addition of MLGs, the overall thermal stability of PC/MLG nanocomposites increases with MLG loadings. A maximum increase about 29.23°C in Tonset of thermal decomposition is observed in PC/MLG nanocomposite having 3 wt% of MLG loading. The activation energy ( Ea) of thermal decomposition is also calculated by kinetic analysis of thermal decomposition of the PC/MLG nanocomposites using Horowitz–Metzger and Broido’s methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.