Abstract

The aim of this study was to evaluate the effects of gamma irradiation (y-irradiation) at doses of 15, 30 and 45 kGy on chemical composition, anti-nutritional factors, ruminal dry matter (DM) and crude protein (CP) degradibility, in vitro CP digestibility and to monitor the fate of true proteins of full-fat soybean (SB) in the rumen. Nylon bags of untreated or γ-irradiated SB were suspended in the rumens of three ruminally-fistulated bulls for up to 48 h and resulting data were fitted to a nonlinear degradation model to calculate degradation parameters of DM and CP. Proteins of untreated and treated SB bag residues were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Digestibility of rumen undegraded CP was estimated using the three-step in vitro procedure. The chemical composition of raw and irradiated soybeans was similar. Results showed that phytic acid in γ-irradiated SB at dose of 30 kGy was eliminated completely. The trypsin inhibitor activity of 15, 30 and 45 kGy γ-irradiated SB was decreased (p<0.01) by 18.4, 55.5 and 63.5%, respectively. From in sacco results, γ-irradiation decreased (p<0.05) the washout fractions of DM and CP at doses of 30 and 45 kGy, but increased (p<0.05) the potentially degradable fractions. Gamma irradiation at doses of 15, 30 and 45 kGy decreased (p<0.05) effective degradability of CP at a rumen outflow rate of 0.05 h -1 by 4.4, 14.4 and 26.5%, respectively. On the contrary, digestibility of ruminally undegraded CP of irradiated SB at doses of 30 and 45 kGy was improved (p<0.05) by 12 and 28%, respectively. Electrophoretic analysis of untreated soybean proteins incubated in the rumen revealed that β-conglycinin subunits had disappeared at 2 h of incubation time, whereas the subunits of glycinin were more resistant to degradation until 16 h of incubation. From the SDS-PAGE patterns, acidic subunits of 15, 30 and 45 kGy γ-irradiated SB disappeared after 8, 8 and 16 h of incubation, respectively, while the basic subunits of glycinin were not degraded completely until 24, 48 and 48 h of incubation, respectively. It was concluded that γ-irradiated soybean proteins at doses higher than 15 kGy could be effectively protected from ruminal degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.