Abstract

The effects of the functional group density in the stylene-divinylbenzene copoymer phase and of the supporting electrolyte concentration in the aqueous phase on the perfomance of the iminodiacetate (IDA)-type chelating resin were studied in terms of contribution of an ion-exchange mechanism. High hydrophobicity of the resin having a low functional group density interfered with penetration of aqueous solutions into the resin phase to slow the acid-base reaction and the adsorption reaction. Uptake of the cation in the supporting electrolyte into the resin phase was clearly indicated in each of two acid dissociation reactions. The high concentration of the supporting electrolyte enhanced acid dissociation of the IDA group, and a singly deprotonated species interacting with the supporting electrolyte cation strongly interfered with adsorption by the ion-exchange mechanism, while only slightly interfering with adsorption by the complexation. Both the complexed and ion-exchanged species respectively involving two or more IDA groups were destabilized to reduce the adsorption capacity of the resin having the low functional group density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.