Abstract

An experimental investigation is performed to study the effects of initial fuel-air mixing on NOx and CO emissions in swirling methane jet flames. The major parameters used to modify the initial fuel-air mixing ahead of the swirling flame are the swirl number, the fuel-air momentum flux ratio, and the fuel injection location. Two characteristic swirling combustion modes, the fuel jet-dominated (type-1) and the strongly recirculating (type-2) flames, are identified from flame visualization and 2-D laser-induced predissociative fluorescence imaging of OH by varying the fuel-air momentum flux ratio. Laser Doppler velocimetry (LDV) measurements show that the shear layer between the edge of the swirling recirculation zone and the external flow is a highly turbulent and rapid mixing region. The maximum mean flame temperature is located at the edge of the recirculation zone, indicating violent combustion and strong mixing of fuel, air, and hot products in this region. Strong and rapid mixing of the strongly recirculating flame, which increases mixture homogeneity and shortens the characteristic time for NOx formation, results in a lower NOx emission index than that in the fuel jet-dominated flame. Excess cold air entrained by the swirling flow may quench the combustion and the hot products, resulting in an increase of CO emission, indicating poor combustion efficiency. By modifying the fuel injection pattern with the annular fuel injector, which changes the fuel-air mixing pattern and properly smooths the rapid mixing leading to a higher flame temperature, the NOx emission level can further be reduced with a significant decrease in CO emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.