Abstract
Objectives of the experiment were to determine the effects of mare age and gonadotropin treatments on dominant follicle vascularity, ovarian blood flow and dominant follicle growth and to associate follicular vascularity with oocyte developmental capacity. Growing follicles >30mm from young (4–9 years) and old (>20 years) mares were assessed for blood flow using color Doppler ultrasonography before maturation induction with recombinant equine LH (eLH) and immediately prior to oocyte collection at 20–24h after eLH. Pulsed Doppler was used to obtain resistance indices of ovarian arteries ipsilateral to preovulatory follicles. For eFSH-treated estrous cycles, eFSH administration was started after detection of a cohort of follicles ≥20 to <25mm and continued until a follicle >30mm. Oocytes were harvested using transvaginal, ultrasonic-guided aspirations and cultured and injected with sperm at 40±1h after eLH. Presumptive zygotes were incubated, and rates of cleavage (≥2 cells) and blastocyst formation were obtained. Embryos were transferred nonsurgically into recipients’ uteri, and pregnancy rates were assessed. Vascularity (number of color pixels per total pixels) was higher (P=0.003) in the follicles of old compared to young mares, with no significant interaction of eFSH or eLH. Effects of eFSH and time from eLH on follicle vascularity were not significant. The vascularity of follicles associated with oocytes that did compared to those that did not form blastocysts was greater (P=0.048), although follicular vascularity was less (P=0.02) for follicles associated with oocytes that did compared to those that did not develop into pregnancies. Resistance indices were not different for age, eFSH treatment, time after eLH administration and oocyte developmental potential. Growth of the dominant follicle was not associated with vascularity, although advanced age tended (P=0.09) to have a negative effect on follicle growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.