Abstract

Using frozen ready-to-bake dough is a very common practice in the industrial croissant production. However, the freezing process during the preparation frozen croissant dough can deteriorate its quality. In this study, we investigated the effects of the freezing rate (FR) and terminal freezing temperatures on the volume and firmness of croissants by analyzing frozen dough for yeast viability, thermal property changes, and internal microstructure integrity. Croissant dough samples were frozen at rates ranging from −0.72 to −3.56 °C min−1 down to final temperatures of −20, −40, and −55 °C. Our results showed that the ice crystals normally forming in the dough during freezing, causing a lower yeast viability and croissants quality, were of smaller size when a rapid FR ≥ −3.19 °C min−1 was used. Furthermore, a freezing termination temperature lower than −20 °C induced more yeast cell death, thereby deteriorating croissant quality. Therefore, we suggest that the croissant dough freezing process should be conducted with an appropriate FR down to a suitable terminal temperature. Consequently, our results are helpful to understand how the freezing procedure affects ice crystal formation and yeast viability in the frozen dough matrix and our findings can be applied to enhance bread quality in the frozen dough industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.