Abstract

In this work, the effects of fluorine incorporation in high mobility zinc oxynitride (ZnON) semiconductor are studied by both theoretical calculations and experimental evaluation of thin film transistors (TFTs). From density functional theory (DFT) calculations, fluorine acts as a carrier suppressor in the ZnON matrix when it substitutes a nitrogen vacant site (VN). Thin films of ZnON and ZnON:F were grown by reactively cosputtering Zn metal and ZnF2 targets, and their electrical, physical, and chemical characteristics were studied. X-ray photoelectron spectroscopy (XPS) analyses of the nitrogen 1s peaks in ZnON and ZnON:F suggest that as the fluorine incorporation increases, the relative fraction of Zn-N bonds from stoichiometric Zn3N2 increases. On the other hand, the Zn-N bond characteristics arising from nonstoichiometric ZnxNy and N-N bonds decrease, implying that indeed fluorine anions have an effect of passivating the N-related defects. The corresponding TFTs exhibit optimum transfer characteristics and switching ability when approximately 3.5 atomic percent of fluorine is present in the 40 nm thick ZnON:F active layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.